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In the idealized problem of homogeneous isotropic stationary inertial-range turbulence 
the rate of relative dispersion of an ensemble of tracer pairs can be characterized by a 
constant C,. In order to compute this constant with random-flight equations, however, 
it is necessary first to know the values of two other constants, C, and C,, that occur 
in the two-particle velocity-component relations of Lagrangian tracers (Faller 1992). 

C, and C, are found by an elaborate trial and error procedure in a new two-tracer 
random-flight model of dispersion that matches input and output values of these two 
variates. The constant C, is then computed using the Lagrangian relations and is found 
to be significantly smaller than when the Eulerian Karman/Howarth correlations are 
used. 

The probability density distribution of tracer separations has a kurtosis slightly 
larger than that of a comparable Gaussian distribution. At small spacings the 
frequency of tracer spacings is six to ten times larger than would be expected from a 
Gaussian distribution. The distribution function for the speed of separation of the 
Lagrangian tracers has a negative skewness similar to that found for two-point 
Eulerian velocities. 

1. Introduction 
The concept of relative dispersion was introduced by L. F. Richardson (1926) who 

considered the expansion of puffs of tracers of different spatial scales in the turbulent 
atmosphere. The following is a brief summary of some of his conclusions. Richardson 
noted that scales of turbulence much larger than the characteristic diameter of a puff, 
d, would simply convect the puff; scales of turbulence much smaller than d would act 
as Fickian diffusion; but scales of turbulence close to d would expand the puff by 
tearing it apart in an irregular manner that would be impossible to describe in any 
individual case. He noted that it was necessary to consider the dispersion of a large 
ensemble of superimposed puffs, each taken relative to its centre of mass. We may call 
such an ensemble of puffs a ‘cloud’, and in isotropic turbulence such a cloud will 
expand symmetrically about its centre. 

Richardson further deduced that the rate of expansion of the mean-square radius of 
tracers in a single puff, p 2 ,  could be represented by the mean-square distance between 
all possible pairs of tracers in the puff: P = 2p2. Moreover, he noted that the growth 
of P for the cloud could be obtained from many randomly selected pairs of tracers, 
e.g. one pair representing each puff. 

This study is concerned with ‘idealized’ (homogeneous isotropic stationary inertial- 
range) three-dimensional relative turbulent dispersion. Its purposes are : (i) to provide 
estimates of the characteristics of relative dispersion until the day when full-scale 
numerical simulations or observations can provide more exact information; and (ii) to 
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provide a method for the rapid computation of dispersion that, hopefully, can be 
extended to more-realistic turbulent dispersion situations. These goals are attained in 
part in a new ‘random-flight’ (Durbin 1980) model which integrates the evolution 
of the spacings of many thousands of pairs of tracers, a Monte-Carlo approach with 
each pair calculated separately. 

The major goals of the model are the determination of: (i) the constants C, and C, 
that characterize the difference between the two-point Eulerian correlations of velocity 
components and the corresponding two-tracer Lagrangian relations (Faller 1992) ; (ii) 
the constant C, that measures the rate of dispersion; (iii) the probability density 
distribution of tracer separations, related to the concentration of pollutants; and (iv) 
the correlation timescale for the separation of tracers. 

To find C, and other characteristics of relative dispersion it is first necessary to 
simultaneously evaluate and find ‘consistent’ values of C, and C,, i.e. matched input 
and output values found by trial and error. These coefficients should be found from 
Lagrangian statistics, i.e. along trajectories, which are unavailable in advance of the 
solution, so this is essentially a ‘bootstrap’ operation. 

The random-flight approach is straightforward and computationally efficient. The 
basic random-flight equation is also described as a Langevin equation, a correlated 
random-walk, a first-order Markov process and an Uhlenbeck-Ornstein procedure. 
Single-tracer applications have already demonstrated the utility of the method in a 
variety of practical applications (e.g. Durbin 1980; Thomson 1986; van Dop & 
Nieuwstadt 1985; Faller & Auer 1988). While there have been several attempts to 
validate this approach (e.g. Durbin 1983 ; Thomson 1987) a complete theoretical 
justification of even the single-tracer problem remains elusive. Nevertheless as shown 
in Faller & Auer (1988), for single tracers the dispersion is found to exactly match the 
theoretical prediction of Taylor (1921) at large times when a proper definition of the 
time step is used. Thus it seems that the random-flight equation provides suitable 
kinematics while the dynamics is statistically represented by specification of the mean- 
square turbulent velocity, [u”], and the Lagrangian integral timescale, T, both of which 
also must be specified to evaluate Taylor’s equation. 

Two-tracer models are fundamentally different, however, and at the very least 
should satisfy the two-tracer kinematic relations of turbulence. For a review of earlier 
two-tracer models and their application to concentration distributions one may refer 
to Thomson (1990) and to Borgas & Sawford (1994). The latter authors used 
Thomson’s approach and were concerned about deficiencies in that model and a lack 
of uniqueness. The present model differs in several ways. First, whereas previous 
modellers have based their method on Eulerian velocity correlations, here the two- 
tracer second-order relations for Lagrangian tracers, as derived in Faller (1992), are 
directly satisfied. Secondly, the unmodified random-flight equations are used for each 
tracer and thus they satisfy Taylor’s (1921) single-particle diffusion results. Thirdly, 
apart from the two approximations noted in Faller (1992) (and use of the random- 
flight equations) there are no further approximations. Finally, the solution is unique 
(apart from stochastic uncertainty) and internally consistent. 

In three-dimensional turbulence we have the familiar inertial subrange with the slope 
S = - 5/3 when the logarithm of the energy density (1nE) is plotted against the 
logarithm of the wave number (Ink). Possible slight departures from this idealized 
slope will not be considered here, but one can conceive of other values of S and ask 
about the characteristics of dispersion in such cases. This model can easily handle cases 
other than S = -5/3 (Faller & Choi 1985) if such studies are warranted. 
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2. Terminology and notation 
For the inertial subrange it is required that the non-dimensional tracer separation 

satisfy r = r‘/L 4 1 where L is the Eulerian integral lengthscale of the turbulence 
and primes denote dimensional variates. Viscous effects are omitted with the assertion 
that all r‘ are much larger than the Kolmogorov microscale. There are assumed to 
be a Lagrangian timescale, T, and a root mean square (r.m.s.) component speed, 
u’ = [(u; ~ ; ) / 3 ] ” ~  = 1, i = 1-3. These parameters are related by 

Cs = L/u‘T, (1) 

where Cs has been called the Corrsin constant (Faller 1992) and, following Corrsin 
(1963) and Tennekes & Lumley (1972), for three-dimensional turbulence Cs z 3. Cs is 
a free parameter of this model, but it will emerge that the non-dimensional results are 
independent of Cs over a reasonable range of possible values. Velocities, lengths, and 
times are made dimensionless by u’, L, and L/u’, respectively. Thus for the components 
of u’ and the components of r‘ the non-dimensional variates are ui = u;/u’ and ri = 

r;/L, and non-dimensional time is t = t‘u‘/L = t’/(CsT). It is important to recognize 
that in these computations the cloud of tracers always remains in the inertial subrange 
with r < 1 and with t 4 1. 

The vector Y extends from point 1 to point 2 (figure 1) which have velocities u1 and 
u,. The velocity components in an arbitrary rectangular coordinate system are u,,~ and 
u , , ~ ,  and the components parallel to and normal to Y are u ~ , ~ ,  u , , ~ ,  ul ,n  and u , , ~ .  

Three special ensemble averages are used : 
E l :  averages indicated by a tilde. All tracer pairs have travelled for a specified 

elapsed time, t,, from some distribution of initial spacings, Y,. Many different lengths 
and orientations of the Y at time t ,  are included in this ensemble in contrast to 
ensembles E2 and E3. 

E2 : averages indicated by angular brackets. All tracer pairs have the same specified 
length, rs, at some fixed time, t f ,  and all orientations of Y are included. 

In a cloud of tracers observations of all tracer-pair spacings at some tf could be 
assigned to many intervals rn Ar and E2-averages of some function of r would be 
found for each rn. For time-independent turbulence the data from many specified times 
could be combined for each r,. In this way averages ( U )  (rn) and ( U 2 )  (r,) for the 
calculation of C,(r,) and C2(rn) from (3) and (4) (below) could be found. 

In the present model tracer pairs are integrated separately from some distribution of 
initial values, ro, and the value of r when some tracer reached tf could be classified into 
r ,  k Ar as above. But because C, and C, are constant in the inertial subrange, a more 
efficient method than the direct use of (3) and (4) has been used for the evaluation of 
these constants, as discussed in 96.2. 

E3: averages indicated by an overbar. These are similar to an E2 average but all 
tracer pairs have the same specified vector, rs, as in the development of the 
Kkman/Howarth relations (Karman & Howarth, 1938 ; also see Batchelor, 1953). 

Averages other than E l ,  E2 or E3 will be denoted by square brackets. 
The general rate of expansion of a cloud of tracers is represented by the constant 

C,, in the formula 

where Y+ = (P)liZ is the r.m.s. r in E l ,  and, as shown by several authors, /3 = 1/3 for 
three-dimensional idealized turbulence. In Appendix A dimensional arguments show 
that the relation /3 = - ( S +  1)/2 may have more general applicability. 

dr+/dt = Co(r’)P, (2) 
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u l ,  1 u2, I 

FIGURE 1. The vector r between points 1 and 2 and components of the velocities u1 and u2 in two 
dimensions. 

The average rate of expansion of all tracer pairs having the same spacing rs defines 
c, by 

( U )  = (dr/dt) = C,r{ (3) 

where U = u2, - ul, is the rate of separation of an individual pair of tracers. C, is 
defined similarly but is based upon the r.m.s. expansion speed and is given by 

( UZ)'/' = ((dt/dt)')l', = C, ri.  

The relation between C, and C, is simply 

Z(r,) = ( U z ) - ( U ) 2  = (Ci-Cf)(rs)2p, 

(4) 

where Z is the variance of U in E2. 
In statistical summaries 'Gaussian' refers to any distribution of the form 

A (exp (- ( x  - x ) ~ ) ) ,  where A is a factor related to the area under the curve, whereas 
'normal' refers to a Gaussian with zero mean and unit sd. If the components xi  of some 
vector x have Gaussian forms with zero mean, then the length x has a distribution of 
the form B(x2 exp (- x 2 ) )  where B is some factor, and this will be referred to as a three- 
dimensional Gaussian. 

3. The random-flight procedure 
A recursion relation for the velocity components of a single tracer is taken to be 

~ ~ , ~ = R u ~ , , - ~ + Q z i , , , ,  Q = ( 1 - R 2 ) 1 1 2 ,  i =  1-3, (6) 

where m is the time-step index, zii, , is a random contribution to ui, ,, and R is the one- 
time-step autocorrelation of ui. Equation (6) is a random-flight model equation that 
represents the effects of the turbulence on the velocity of a single parcel of fluid in place 
of the full dynamic equations of motion. At any time step each component is presumed 
to have a persistence, represented by the term R U ~ , , - ~ ,  and a random impulse from 
other fluid parcels, represented by Qzii. ,. 
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When a forward time step is used to convect a tracer, specifically 

xi, ,+I = xi, , + ui, , At, 

then R is related to the time step At‘ and to T by 

(7) 

R = (2-At’/T)/(2+At’/T) = (2-  CsAt)/(2+ CsAt) (8) 

which can be used in single-particle dispersion problems with At‘ up to 2T when 
t’ % T(Fal1er & Auer 1988). The case At‘ = 2T(R = 0, Q = 1) is a random walk, and a 
corollary is that a random walk with step At’ implies an integral scale T = At‘/2. The 
more commonly used expression R = exp (- At’/T) is a second-order approximation 
to (8). 

The use of (6) guarantees that ui will have a normal distribution if the zii are drawn 
from a normal population. If the iii come from some other population, say of a top- 
hat form, the distribution of ui will be a function of R, approaching normality as 
R+ l(At+O). 

That R is indeed a one-time-step autocorrelation may be seen by multiplying (6) by 
u ~ , ~ - ~  and averaging over many time steps. Accordingly, (6) gives a stepwise decay of 
the autocorrelation [ui,,ui,,J (time lag kAt) that is an approximation to a 
continuous exponential decay of the autocorrelation of ui. 

We now consider the rate of separation of two tracers with vector spacing r .  A 
random-flight equation is applied to each tracer, but the velocities of the two tracers 
will be correlated so that all second-order two-tracer Lagrangian velocity relations are 
satisfied statistically. 

The non-dimensional random-flight equations for two tracers are 

where the subscripts m on R, and Q, indicates that these will be changed with time. 
It is necessary to change At, and therefore R and Q ,  at each time step because the 
spacing r increases over several orders of magnitude. 

The corresponding convection equations are 

and the component spacings are ri, 
Because we are in the inertial subrange of turbulence with scales of motion much 

larger than r ,  the velocity components and u ~ , ~  must be spatially related. It follows 
that the six random contributions, zil,i and (the six zi) should be spatially correlated, 
as well. If they are not it follows that the u ~ , ~  and u ~ , ~  themselves will gradually become 
uncorrelated. Thomson (1990) and Borgas & Sawford (1994) used uncorrelated zi but 
maintained correlations of the u by applying modified random-flight equations with a 
more complex Ru term. It is argued here, however, that the zi represent impulses from 
all scales of turbulence, and those scales comparable to and larger than r should 
contribute correlated zi. Of course it would seem on physical grounds that if the 6 have 
spatial correlation they should also have temporal correlation. Nevertheless, the zi 
should be selected here without temporal correlation because this is already specified 
by R. Thus in this formulation the random-flight equations remain unmodified, the 

= x2, i ,  - xl, i, m. 
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temporal correlation is retained in the Ru terms, and the spatial correlation enters 
through the random components. 

The ti are chosen at each time step as each tracer pair is individually integrated. But 
this must be done in such a way that the required relations between the components 
of u, and u, will be satisfied after the trajectories of many thousands of tracer pairs 
have been integrated. The detailed procedure for selecting the ti is given in $ 5  and 
Appendix D, but for the present let us assume that a satisfactory method does exist. 

In relative dispersion the individual values of u ~ , ~ ,  u , , ~ ,  xl,? and xZ,< are of little direct 
interest since only the differences contribute. Therefore, it is often convenient in the 
computations to deal with the velocity component differences Ui = u,, - ul, and the 
component spatial differences, ri = x,, -xl, i .  The actual computations, however, use 
(9) and (10) directly. If the til,i and come from normal distributions then the ul,i 
and uz, j  also will be normally distributed throughout the computations, as should be 
the case. At the same time the correlations of provide the correct relations 
between the u,,< and u2,! which vary with the particle spacing. With this formulation 
it is not necessary to introduce correction terms similar to those introduced by 
Thomson (1 990) in his somewhat different formulation of the problem. 

and 

4. The kinematic constraints 
This section summarizes and augments the results of an earlier study (Faller 1992) 

concerning the difference between two-point Eulerian velocity correlations and two- 
tracer Lagrangian relations. Consider the parallel components of velocity ul, , and u,, 
at two points separated by r (figure 1). For fixed points and for isotropic turbulence 
(u:,,) = (u;,,,) = 0 where asterisks refer to Eulerian observations or relations. In 
contrast, for pairs of Lagrangian tracers with a specified spacing, rs, on average the 
tracers disperse with ( U )  = (uZ,,-u1,,) > 0, and by symmetry (u,,,) = - ( u l , J  = 
< U ) / 2 .  These facts should be incorporated into the relations between the velocities of 
the two tracers in any dispersion model. 

The relation ( U )  > 0 has frequently been questioned and deserves elaboration. 
U = ( u ~ , , ~  - ul, ,) is the projection of U = (u, -u,) on r hence ( U )  = ( U .  r / r ) .  If Uand 
r were independent it would follow that ( U )  = 0. But r does not have random 
orientation with respect to U. As shown below, the relation between U and r arises 
from the persistence of U that is associated with a finite Lagrangian timescale, T. 

Consider the change of r with a constant U, i.e. with T-t co. If U > 0 it is easily seen 
that r becomes more parallel to U, thus making the product U = U .  r / r  increase with 
time. Conversely, for a long-persistent U with U < 0, r becomes more perpendicular to 
U, and so U decreases and eventually becomes positive. Clearly, for any finite Teach 
tracer pair tends to have a positive average U, and this is the essence of dispersion. It 
follows that the selection of many tracer pairs with any fixed rf will yield ( U )  > 0. 
Even with a random walk (in time) there is an implied T = At'/2 (see text following (8)) 
that is responsible for random-walk dispersion. Moreover, any dispersion model must 
result in ( U )  > 0 regardless of its formulation. 

For isotropic turbulence the second-order Eulerian two-point velocity component 
correlations can be found from the Karman/Howarth (1938) relations 

pzj = uT,< u: ,~ = ( f *  -g*) ri r j / r 2  +g*6i,j (E3 average), (13) 

where f*  = (u?, , uz, p )  (E2 averages) (14) 

and g* = (4,?&,?J. (15) 
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Here pzj, f*  and g* are correlation coefficients and subscripts p and n refer to the 
parallel and normal components relative to r .  

For a three-dimensional non-divergent fluid 

g* = f * + (r/2) df */dr (16) 

leavingp as the only variate needed to determine the ,u&. But the development of (16) 
required the explicit assumption of a non-divergent fluid and is not strictly applicable 
to diverging Lagrangian tracers. Moreover, although (1 3) still applies (i.e. without 
asterisks),f(as opposed to.f*) is not a correlation coefficient because the means (ul, ,) 
and (u,,,) are not zero and the standard deviations g(ul,,) = ~(u , , , )  =!= 1. Similarly, 
although (u,,,) = (uz,,) = 0, g is not a correlation coefficient because the standard 
deviations q(u,, .) = g(u,, J + 1 (Appendix B). 

The development of expressions for f and g appropriate to diverging tracers as 
given in Faller (1992) relied on one basic assumption and one approximation: it 
was asserted that g could be derived from a development similar to that of 
Karman & Howarth (1938) but for a divergent fluid, the divergence being given by 
D = 3 ( U ) / r , ,  the divergence of those tracers at the specified rs. More precisely, the 
assumption was that the Eulerian velocity relations for a divergent fluid (having an 
average particle separation rate ( U )  = Drs/3) can be substituted for the required 
Lagrangian relations in a non-divergent fluid (where pairs of tracers with spacing rs 
separate at rate ( U ) ) .  While this assumption may appear to be reasonable, its full 
justification (or degree of validity) will require a complete Lagrangian theory or 
suitable numerical solution of the full dynamic equations. 

The approximation needed to find f was that uT, p ,  u;,,, and their difference, U*,  had 
Gaussian distributions. Although U* has a known (Monin & Yaglom 1971) and 
measurable (Anselmet et ul. 1984) skewness, this enters only into third- and higher- 
order correlations, and to second order U* is approximately Gaussian. 

From Faller (1992) the equations for the velocity component relations for divergent 
Lagrangian tracers are then 

Ul,iUP,j = ( f -g ) r i r j / r 2+g&, j>  (17) 

(18) 

(19) 

f = ( u l , p % , p )  = (1+f*)/2-(U2)/4, 

g = ( U , , . U , , , )  =f+(r/2)df/dr+(3 (U)"/4. 

Here ( U )  and ( U 2 )  are unknown functions of r ,  very much complicating the problem. 
But in the inertial subrange we can substitute (3) and (4) to express (18) and (19) in 
terms of the (unknown) constants C, and C,. Moreover, in the inertial subrange 

f *  = exp (- rz), (20) 

where CL = 2/3 (Dickey & Mellor 1979, and Appendix A). Then, for r < 1, f * = 1 - r2/3 
and (17) reduces to 

p.  % , 3  ., = = r 2 " ( ~ + C ~ / 1 2 - 3 C ~ / 4 ) r i r j / r 2  

+ ( 1 + ~ ~ ' ~ ( - 2 / 3 - C ~ / 3 + 3 C ~ / 4 ) ) 8 ~ , ~ .  (21) 

The corresponding Eulerian Karman/Howarth result is found by setting C, = 0 and 
Ci = 2 (Appendix B) and is 

(4/3) r2'3)  
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The determination of C, and C, by trial and error is explained in $0 5 and 6, but for the 
present assume that these constants are known. 

By isotropy the matrix pi, j  is symmetrical with the six independent entries 

_ _ _ _ ~ ~  f u1,1u2,1 u1,1 '2,2 U l , l U 2 , 3  I 

and these must be satisfied in the computations. For each tracer 
step these necessary averages can be found from (21) given C,, 

pair and at each time 
C, and r. 

5. Determination of the random velocity components and the time step 
The evolution of each tracer pair is integrated individually and at each time step six 

zi must be chosen to implement (9) and (10). The E3-average of the product of (9) and 
(10) may be written, after rearrangement, as 

or, more concisely, 

Here it may be noted that although and pi,j,m-l are not correlations, ,k6,j,m is a 
correlation because and ~2, ,~ are drawn from a normal distribution. The 
determination of individual values of the zi at each step now requires two distinct 
procedures: (a)  an evaluation of the right-hand side of (25), and (b) a conversion of the 
,ii,j,rn into individual values of the zi for use in (9) and (10). 

in (25) are readily found from (21). But 
evaluation of the pi, j ,  rn-l is not as obvious. Note in particular that this term is a statistic 
and cannot be computed from the values u , , ~ , ~ - ,  and u , , ~ , ~ - ,  during the integration 
of any single tracer pair, for inconsistencies with > 1 or < - 1 can easily occur. 

To determine the pi,j,m-l we define a parameter G = [(rm-,)/rrn].  It will be seen that 
the selection of a value for G is the equivalent of the selection of a time step. This 
definition is motivated in Appendix C where it is shown how the pi , j , rn- l  can be 
accurately determined by using Gr, in (21) in place of r,. An important part of this 
development is that G, selected to be slightly less than 1 ,  determines the variable time 
step by 

b i , j , m  = ( P .  a , j , m  ' -Knpi,j,rn-l)/(1--Kn). (25) 

(a)  Given values of C,, C,, and r ,  the 

At, = F(1- G)r;,-B/(GC,). (26) 

By this definition of G the time step increases with r such that the ratio ( r , - , ) / r ,  
remains statistically constant even though Y increases by several orders of magnitude. 
The factor F ideally should be 1.0, but the value used in the final computations was 
precisely chosen by trial to satisfy the condition that the calculated value [(rm-l)/rm] 
equals the chosen value of G. A range of values of G was tested and for G > 0.92 there 
were no essential differences in the results, but G = 0.96 was used in the final 
computations to assure accuracy, and for this G the above condition gave F = 1.01. 

(b) The objective is: given a set of six correlations ,it,! = z i l , i z i 2 , j  from (25) at each 
time step, find six random values, and ~2,,~, such that if the procedure were applied 
many times starting with the same the sets of zi would satisfy these correlations. The 
constraints 
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also must be met to satisfy the condition that orthogonal components at the same point 
are not correlated and that the zi have zero means and unit variances. 

The zi,,i are chosen first randomly and independently from a normal distribution 
together with three additional random numbers, i,, i4, and is. The algorithm for then 
finding the z i2 , j  is tedious and is relegated to Appendix D. There is no bias introduced 
by selecting the zi,,i first because the zi,,j so determined also have normal distributions 
and are independent of each other. (In comparative calculations the and the zi, , j  
were chosen first alternately and this demonstrated no difference in the statistical 
results.) 

6. The numerical model 
6.1. Major sections of the computer program 

(a)  Initialization. For each tracer pair the initial component spacings were 
randomly selected from a Gaussian distribution with a standard deviation of 10-l'. The 
resultant r,  was then the basis for calculating the required initial relations = 

u1, i ,ou2, j ,o  from (21) and the individual values of u , , ~ , ~  and were found using the 
algorithm of Appendix D. These values, however, if found for many cases with the 
same would not generally satisfy all of the moments of ul, i  and u , , ~  that are found 
during a time integration of the equations. Thus, transient adjustments should be 
expected due to this imperfect initialization. In this study the adjustment time of 
t = (approximately 250 time steps) was found to be adequate to obtain stable 
values of C, and C, as well as stable third and fourth moments of U. 

Other tests of the initial conditions confirmed that fixing either ro or the u , , ~ , ~  for all 
tracer pairs did not affect the statistical results, as should be expected, but correct 
computation of the initial coorelations by the method of Appendix D was essential to 
avoid very long transients. 

(b)  At each time step and for each tracer pair: 
(i) At,  for the spacing r ,  was found from (26), and new values of R, and Q, were 

(ii) The ,ui3j3m and ,ui,j,mpl based upon rm and Gr,, respectively, were calculated, 

(iii) The ~2,,~,, were randomly selected and the z i , , j , m  were found by the algorithm 

(iv) The six zi from (iii) were used in (9) and (10) to find new velocity components 

Appendix E provides the complete sequence of equations solved at each time step. 
(v) Special analyses of the data were required at selected times. As examples: (I) To 

compute the autocorrelation of velocities, the Ui at each step were scaled to correspond 
to a fixed length and, therefore, a fixed time step. (11) To obtain the distribution 
functions at fixed times and other summaries, data were accumulated at 16 
logarithmically equally spaced fixed times from t f  = to 1.5 x lop3. When a 
calculation passed any t f ,  for data summaries the r and ri were interpolated to that time 
level. (111) At these same times the U were scaled (see below) for the calculation of C, 
and C,. 

(c)  As necessary several 'runs', each with N pair, were carried out to obtain 
estimates of the uncertainty of the statistical results. Usually N > 1000. 

computed. 

and the ,i&, were found from (25). 

of Appendix D. 

q i , ,  and u , , ~ , , ,  the differential speeds U,,,, and then new spacings ri , ,+, .  
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6.2. Computation of the output values Cl,o and C,,o 
For each run output values Cl,o and C,,o were found from 

el,* = [U/rpl, Ci,o = [u2/r2/i’]. (28) 

These formulae deserve special comment because they differ from (3) and (4) and 
because one can easily obtain biased results from wrong selection of the data to be 
averaged. 

To evaluate C, and C, from (3) and (4) one should find averages ( U )  and ( U 2 )  at 
some fixed r f .  One plan might be to select an rf and as each tracer crossed rf, either with 
U > 0 or U < 0, to record and average U and U 2 .  The error of such a method would 
be clear when the distribution of U was examined, for there would be no events at 
U = 0. Clearly, there is a bias according to the value of U itself. This pitfall can be 
avoided by selecting values of U at some fixed time, t f .  Then if both r and U for many 
pairs are recorded at t f  and the values are sorted into N (n = 1 - N )  bins with widths 
Ar and average 1eI;gths r,, the values of U at each r ,  can be used to calculate ( U )  (r , )  
and (U’ )  (r,) .  In addition, values from several t f  could be combined. 

But a more efficient method that avoids the sorting of U and U 2  according to r uses 
the knowledge that in the inertial subrange C, and C, are independent of r .  If each U(r) 
is divided by rB and each U 2  by r28 this is the equivalent of finding individual estimates 
C, = U/r” and Ci = U2/r21.  Equations (28) correspond to averages of these individual 
estimates, and data from various tf  and r can be combined. Then once suitable averages 
of C, and C,  have been found, one can obtain ( U )  ( r )  and (U’)  ( r )  from (3) and (4). 

Two additional possible sources of bias should be mentioned. All integrations must 
be long enough for each tracer pair to pass all values of t f .  If, for example, some slowly 
separating pairs were cut short before passing the largest t f ,  Cl,o and Ct,o would be 
biased toward large values. Moreover, bias will occur if the samples are taken at 
intervals of a fixed number of time steps because of the variable time step and its 
relation to r and U. 

Ideally the t,f should be separated sufficiently to assure independent samples of U. In 
the present study sixteen tf  were used, but it will be seen from the autocorrelations of 
U that these were the equivalent of only two independent samples. 

6.3. Matching input and output values of C, and C,, and the determination of F 
Input and output values of C, and C, had to be matched by trial and error for several 
values of G, Cs, and F to test their effects on C, and C,. For each combination of G, 
Cs, and F about 30 cases were tried, each with 1000 tracer pairs and a different 
combination of inputs Cl,i and C,,i. For each case with N =  1000 there were about 
2000 independent samples. For matching purposes the variates to be analysed were the 
ratios Cl , r  = Cl,o/Cl,i and C,,, = C2,0/C,,i with the goal of Cl,r = Cz, ,  = 1, 
simultaneously. For any one case the standard deviation of the means of Cl,r and Cz,, 
were typically 

For the approximately 30 cases the lines Cl,,(Cl,i, C,,J = 1 and C2,r(C1,i, C,J = 1 
were found by the method of least squares. Their intersection gave estimates of C, and 
C, where Cl,, = C,,r = 1, and the acceptability of these C, and C, were checked by 
further computation to assure consistent values. 

The ratio G, = [(rm-l)/rm]/G should be unity according to the definition of G, and 
the condition G, = 1 was the basis for the selection of a consistent value of F. Here 
again to avoid bias averages must be for data at fixed time levels, but the data from 
several time levels can be averaged. 

0.009 and & 0.006, respectively. 
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6.4. The computation of C, 
For selected values of Cs and G and with consistent values of C,, C, and F, C, was 
computed from (2) using values of r interpolated to the times, t f .  For any two time 
levels t ,  and t,, C, can be found from the integrated form of (2) 

(r;)(l-8) - (r;)('-F) = Co(l -P)(t,-t,), (29) 

where r: and r i  are the r.m.s. values of r for t ,  and t,. The use of 16 time levels allowed 
the calculation of 15 values of C, in each run and these were averaged. 

7. Results 

Values of G above about 0.92 showed no significant differences in the results, but for 
the assurance of accuracy G = 0.96 was used for all of the final computations. 

Consistent values of C, and C, for F = 1 were found at five values of Cs from 2.0 
to 3.4. There were no trends of C, or C, with Cs, and it is concluded that the non- 
dimensional results are independent of Cs over the range indicated above. Dimensional 
results, however, will depend upon the value used for Cs. 

Consistent values of C,(F), C,(F) and the ratio G,(F) were found for several values 
of F. By interpolation to G,(F) = 1, the value F = 1.01 was determined to be correct 
at G = 0.96. Therefore F = 1.01 and the corresponding results C,(l.Ol) = 1.273 and 
C,( 1.01) = 1.58 1 were applied to all further computations. 

7.1. The effects of G, Cs and the value of F 

7.2. Internal consistency of the calculations 
A correct evaluation of (25) is crucial to the success of this model. It would be desirable 
to directly compare calculated values of these sensitive correlations with theory for 
several fixed Y, but it is not practical to compute correlations for any specific vector. 
It is practical, however, to compare calculated and theoretical averaged over all 
directions for fixed r .  

The theoretical directionally averaged ,ui,i,m and ,ui,j,m-l in (25) are found by 
globally averaging (21). With i = j  the average of ri r i / P  is 1/3. For i + j  the averages 
are 0. By theory (1 -,ki,,(th)) changes only from 0.0763 to 0.0769 over our range of 
r and the average value 0.0766 is drawn in figure 2. The averages [l -,Li,i(com)], found 
from the computed random numbers at fixed t f ,  are shown in figure 2 with 50000 
entries for ,Li,,(com) at each t f .  Despite the large fluctuations from the beginning, the 
average is 0.0701, very close to the theoretical value considering the scatter of the data, 
and there is no obvious trend with time. This confirms that the model is internally 
consistent and that the calculations are accurate. The large fluctuations seen at small 
t f  in figure 2 appear to be a computer round-off problem in the calculation of ,ui,i(com), 
and no other statistics have exhibited similar fluctuations. 

7.3. The values of C,, C ,  and C, 
With Cs = 3, G = 0.96 and F = 1.01, theconsistent values C, = 1.273, C, = 1.581 were 
found. With these as input the average C, found from 20 runs, each with 2000 tracer 
pairs, was C, = 1.459 0.002. Table 1 is an example of statistics from the first of those 
20 runs. 

It may be seen from (18) and (19) that for C, = 0 and C, = 2 the Karman/Howarth 
relations are retrieved. Using the same program but with these values, i.e. with the 
Eulerian relations, the expansion constant was found to be C,.E = 1.780 & 0.004. 
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F~GURE 2. Computations of the directionally averaged right-hand side of (25) for comparison with 
theory. Plotted point are computations of [ I  -&(corn)] for 50000 tracer pairs at the 16 time levels. 
The dashed line is the theoretical average value [l -,i,,,(th)] = 0.0766. 

Time level In ($1 In (r+) c, K(r) W,) 
2 -11.18 - 16.78 1.450 2.323 4.144 
3 - 10.84 - 16.29 1.448 2.350 4.216 
4 - 10.51 - 15.79 1.455 2.349 4.237 
5 - 10.18 - 15.30 1.444 2.325 4.197 
6 -9.843 - 14.81 1.436 2.359 4.197 
7 -9.508 - 14.31 1.440 2.372 4.186 
8 -9.175 -13.71 1.443 2.334 4.116 
9 -8.941 - 13.32 1.439 2.269 4.009 

10 -8.506 - 12.82 1.428 2.244 3.988 
11 -8.173 -12.32 1.440 2.284 4.108 
12 -7.839 -11.81 1.455 2.315 4.181 
13 -7.504 -11.30 1.504 2.353 4.228 
14 -7.170 -10.78 1.506 2.357 4.227 
15 -6.836 - 10.28 1.482 2.305 4.166 
16 - 6.502 -9.780 1.469 2.279 4.095 

TABLF 1 .  Some statistical results at time level tf = 2-16. The first of 20 runs with N = 2000 from which 
final averages of C, and K were computed. K(r) and K(Y,) are the kurtoses of Y and Y,, respectively. 
Slow oscillations in C, and the K reflect the autocorrelation of U and the fact that data at the 16 tf 
correspond to only two independent samples. 

Figure 3 illustrates five typical trajectories of In (Y) us. In ( t )  with dots every five time 
steps. The slopes of these trajectories may be compared to the theoretical average slope 
1/(1-/?) = 1.50. Approximately 30 % of the time U < 0. The trajectories also give an 
impression of the autocorrelation time of the separation speed, U. 
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In (0 
FIGURE 3. Five examples of trajectories of In@) us. In(@ Plotted points are at every five time steps. 
Successive curves are displaced by one unit to the right. The straight line is the theoretical slope, 
1 / (1  -p) = 3/2. 
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FIGURE 4. Autocorrelation curves for U and U, as a function of the number of time steps with G = 0.96. 
Plotted points are at 5-time-step lags. The curves fall to I/e at 98 and 37 time steps for U and U,, 
respectively. 

7.4. Autocorrelations of U and of its components, Ui 
Figure 4 illustrates the autocorrelations of U and Ui as functions of the number of 
time steps at G = 0.96. To obtain a time series suitable for autocorrelation, U and Ui 
at length r were scaled to a fixed length by (rf/r)P so that there would be no trends in 
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FIGURE 5.  A histogram of r at fixed t. The curve is the three-dimensional Gaussian with the same area 
and variance as the histogram. The large line from the abscissa is one standard-deviation about the 
origin. The histogram is found from 40000 values of r .  

the velocities and so that the time step represented by each U would be the same. The 
number of steps at which the two curves reach l /e  are 37 for Ui and 98 for U, and these 
are taken to be estimates of the integral scales of the two curves. 

The number of steps between the tf time levels used for data analysis averaged only 
15, so it is clear that data at the 16 t f  were not all independent. Requiring two integral 
scales for independent data, it seems that for each tracer pair U had only two 
independent values. This conclusion is borne out by the trajectories of figure 3 and by 
the examination of other data. For example, the values of C, and K in table 1 show 
slow oscillations of these statistics with timescales comparable to the integral scale 
of u. 

Figure 4 also shows that for G = 0.96 the time step is short compared to the integral 
scale of Ui thus assuring computational accuracy in this respect. These integral scales 
also can be guides for direct observations of relative tracer motions or for the analysis 
of computer simulations. This point will be considered further in $8 where examples 
of the conversion to dimensional variates are given. 

7.5. The distributions of r and ri 

The distribution of r at a fixed time is given in figure 5 where the histogram shows the 
calculated distribution and the curve gives the three-dimensional Gaussian distribution 
that has the same area and variance as the histogram. Moments of these distributions 
are taken about the origin because mirror-image curves should occur for r < 0. The 
kurtosis of the three-dimensional Gaussian is K = 1.667 and that of the histogram is 
K = 2.285 +0.010 standard mean deviation, somewhat larger because at large r many 
histogram values exceed those of the Gaussian. The excess at small r is detailed in figure 
6 where it may be seen that the frequency is 6 to 10 times that of the Gaussian. The 
histogram of figure 6 is well fit by a straight 1ine.over a range of Y but this line does not 
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FIGURE 6. The same as figure 5 but for r close to the origin. Only 2355 of the 200000 total values of 
r fell into this range, 0 < r < 0.105. As in figure 5 the abscissa scale is in terms of the standard 
deviation of the Gaussian. 
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FIGURE 7. A histogram of the components ri for 120000 values and the corresponding Gaussian 
curve. Negative values of ri have been rectified because of symmetry. The abscissa is in terms of the 
standard deviation of the two curves. The histogram exceeds the curve at larger r,. 

intersect the origin. Further extensive calculations confirmed that the curve is parabolic 
very close to r = 0. 

Figure 7 gives a histogram of the components ri in comparison with a Gaussian. The 
histogram kurtosis is Ki = 4.1 19f0.017 standard mean deviation compared to K = 3 
for the Gaussian. The larger Ki indicates that the histogram is more peaked than the 
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FIGURE 8. A histogram of the separation speed U for 224000 values and the comparable Gaussian 
curve. The tall line on the abscissa is U = 0. Shorter lines are at 1 and 2 standard deviations 
from the mean (dashed line). These data for U have a negative skewness similar to that for the 
Eulerian U*.  

corresponding Gaussian. The data for K(r) and K(rJ in table 1 show that to fourth 
order the distributions show no trend, only small oscillations, thoughout the 
computations. 

Figure 8 gives a histogram of U/rP in comparison with the corresponding Gaussian, 
and for fixed r this histogram is also the distribution of U. The mean has the value of 
C,. This histogram has skewness Sk = -0.45, negative as in the distribution of U* 
(Anselmet et al. 1984). The corresponding distribution of the Ui indicates only a slight 
but systematic departure from Gaussian. 

7.6. The distribution of U at fixed r 

8. Conclusions 
This new random-flight model for relative dispersion in idealized turbulence 

evaluates and uses the two previously undetermined constants defined in Faller (1992). 
The consistent values C, = 1.273 and C, = 1.581 have been determined by a trial and 
error procedure. The model satisfies all the second-order two-tracer Lagrangian 
velocity relations, similar to those for the Eulerian Kannan/Howarth correlations. 
Although these Lagrangian relations are purely kinematic constraints, it is believed 
that the random-flight equations, coupled with these constraints, produce a fair model 
of relative dispersion. Dynamics enters the model by specification of the turbulent 
intensity and the Lagrangian integral timescale. 

as found from (25) has shown good agreement 
with theory. Many other checks of computed statistics, for example verification that 
[si] = [s3 = 1 and [ui,,] = [ui,,] = [ui,,] = 1, have shown that the model is internally 
consistent and that the computational program is correct and accurate. Table 1 shows 
that the statistics are stable over the length of time for which results were recorded 
aside from small stochastic fluctuations. 

The average of many values of 
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The Lagrangian value of the expansion coefficient is C, = 1.459. (Note that r is the 
spacing of tracers, not the cloud radius. The expansion coefficient for the r.m.s. radius 
of a cloud, (jj’);, is C,/1.414 = 1.032.) This is substantially less than Co,E = 1.78, found 
when the Eulerian correlations are used. The significance of this difference is clear in 
the Richardson t3 law, which in non-dimensional form is 

r+2 = ye113t3, (30) 

where y is an undetermined constant O(1) and 6 is the non-dimensional dissipation 
rate. Then from an integration of (2) it is readily found for large t that 

r+’ = (2C,/3)3 t 3 ;  (31) 

hence y = (2C,/3)3 
is 

Comparing the Lagrangian and Eulerian values of y the ratio 

y L / y E  = (C0/C,,E)3 = 0.55. (32) 

Some examples of a conversion to dimensional quantities may be useful. 
Dimensional variates for time, length, and speed are found from 

t’ = CsTt = Lt/u’, r‘ = rL, and U’ = Uu‘. 

In a laboratory situation take L = 100 cm and u’ = 5 cm s-l, and suppose 
measurements at a spacing of r’ = 1 cm. From this model with G = 0.96 and at r = 0.01 
the time step would be At = 0.001 53 and At’ would be 0.0306 s. Since the correlation 
time of Ui is 37 At for G = 0.96, the correlation time of a dimensional component Ul 
would be 1.13 s, and the correlation time of U’ would be 2.6 s. Thus, observations 
would have to be separated by at least 5 s to have reasonably independent samples of 
U’ from the same pair of tracers. 

For an atmospheric example take L = 1000 m and u‘ = 5 m s-l and take a particle 
pair with a separation of 1 m. The correlation time for a component U ;  would then be 
2.4 s and that of U‘ would be 6.7 s. Thus At’ < 2.4 s would be required to adequately 
simulate two-particle dispersion computationally for the specified conditions. 

The distribution of r shows distinctly non-Gaussian characteristics with a more 
peaked distribution. Figures 5 and 6 imply much greater concentrations of tracers or 
pollutants at small r than would be expected from an equivalent Gaussian cloud. 

Finally, it is interesting to compare the skewness of U as seen in figure 8 with that 
for the parallel velocity difference at two fixed points, U*. The model skewness is 
Sk = -0.45. The theoretical skewness for U* from Monin & Yaglom (1971) can be 
written as Sk = -0.283b (see Faller 1992, Appendix E) where the dissipation rate has 
been written as d = b d 3 / L .  If b were 1.63 these skewness values would be the same. 

The characteristics of relative dispersion considered here eventually will be 
determined by direct numerical solution of the Navier-Stokes equations. In the 
meantime numerical models do not reach sufficiently high Reynolds numbers and 
observations are not adequate for definitive results. This model provides a guide for 
future studies, and the method, with variations, may prove to be useful in a variety of 
dispersion problems. 

This research was supported in part by past grants from the National Science 
Foundation: ATM 3217139 and MSM 8617897. Special thanks are extended to 
Mr Gi-Sang Choi who assisted with the early phases of this study as a graduate 
student at the University of Maryland. 
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Appendix A. The relations between S, 01 and p 
A.l. The relation of ,!3 to S 

We may hypothesize a subrange with a slope S and the flux of some quantity through 
this subrange at rate 52'. For the traditional cases of S = -5/3 in two or three 
dimensions, 52' would the flux of energy, F ' ;  and for S = - 3 in two-dimensional 
turbulence 52' would be the flux of enstrophy, 11'. 

For the three-dimensional subrange dimensional arguments give 

d(r+)'/dt = D , ( c ) ~ / ~  (r+)413, (A 1) 

where D, is a non-dimensional constant O(1) and e is dimensionless. But from (2) we 
may also write 

and it is apparent that /3 = 1/3 and 2C, = Dl(e)li3.  
For the two-dimensional enstrophy cascade it is similarly found that /3= 1 and 

2C, = D2(7)113. Thus for S = -5/3, /3 = 1/3 and for S = -3, /3 = 1, and the relation 

d(r+)2/dt = 2C;(r+)(l+B) (A 2) 

p = - ( S +  1)/2 (A 3) 

is suggested. From similar arguments for an arbitrary (within limits) S,  relation (A 3) 
applies if the dimensions of 52' are such that it enters an equation like (A 1) to the 1/3 
power. 

A.2. The relation of 01 to /3 and to S 
We begin with the identity 

( u*2) (U)"(  U*2) = ( U ) ' .  

(U*Z)  = ((u;,p-u;,,.)2) = 2u2(1 -j-*), 

(A 4) 

(A 5 )  

Expanding the left-hand side by 

where 

and expanding the right-hand side using (3), it follows that 

f* = (u~ , , .u~ , , . ) /u2= exp(-r") - 1-r", and u2 = 1, 

2r" ( U ) ' / (  U*')  = C: r28. (A 6) 

But because both C: and ( U ) ' / I ( U * ' )  must be independent of r ,  it follows quite 
generally that CL = 2p. Moreover, for the familiar examples of S = - 5/3 and S = - 3 
the relation 

is valid, and (A 7) applies more generally to the extent that (A 3) is applicable. 

O1 = - ( S +  1) (A 7) 

Appendix B. Additional relations involving u ~ , ~ ,  u ~ , ~  and u ~ , ~  
The formula for (u:, p )  may be found in Faller (1992) and is 

(4,J = <&> = (1 +f*)/2+(U2)/4. 

( U ; , ~ )  = 1 -P /2+Cira /4 .  

(B 1) 

(B 2) 

In the inertial subrange and expandingy = 1 -ra we can write (B 1) as 

Thus the Lagrangian case reduces to the Eulerian <u; ,J*  = 1 if CZ, = 2, and of course 
in the Eulerian case C, = 0. 
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For one of the two normal components at point 1, with u ~ , ~  taken in an arbitrary 
normal direction, note that 

(~?,1+u;,z+u?,3) = 3 = (u?,p>+2(u?,n); 

( 4 , n )  = (ui ,n> = (3-(4,p))/2. 

(B 3) 

(B 4) 

hence for this one normal component 

Then with (u,,,) = (u,,,) = 0 it is apparent that ~ ( u , , , )  = n(u,,,) =k 1, and, as noted 
in $4, g = ( u ~ , ~  u ~ , ~ )  is a covariance but not a proper correlation coefficient. 

Equations (B 1) and (B 2) can be used to find the true correlation coefficients 
Cor (u,,, u Z , J  and Cor (ul, uz, n )  in terms of C, and C, when ( 3 )  and (4) are applied. 
These correlations reduce t o p  and g* for C, = 0 and Ci = 2. 

Appendix C. The determination of At,  and the pi, j ,m-l  
C.l. Formulation of a variable time step 

Consider the backward-time-step finite-difference approximation of (3), averaged for 
many cases that led to a specific r,, namely 

(C 1) ( r ,  - (r,-J)/At,  = Cl rpm, 

where ( r m p 1 )  is an E2-average of the lengths r,-, for the fixed r,. From the definition 
G = [(rm-l)/r,], for a specific r,, ( rmPl )  = Gr, and (C 1) becomes 

At, = (1 - G )  rLp/C1 

(1 - G )  = ( r ,  - (r,-J/r,  

(C 2) 

as a temporary definition of a variable Atm in terms of the constant G. Note that 

is the fractional change of r,  statistically, in one time step. Thus a fixed G provides a 
variable At, such that the fractional change of r is constant as Y increases over several 
orders of magnitude. 

The backward step in (C 2) was used to provide a specific definition for G that is used 
in $C 2 below. To convert (C 2) to a forward time step one need only divide by G. To 
obtain the formula used in the computations a factor F also has been added to give 

At, = F( 1 - G )  YL,-P/C1 G .  (C 3) 
F was introduced to compensate for small errors due to the finite time step and should 
be close to 1. For G = 0.96 the consistent value, as explained in $ 7, was found to be 
F =  1.01. 

The individual values rmpl in (B 1) are the magnitudes of vectors rmpl that may be 
thought of as follows: for N integrations that may have by chance led to the same r ,  
there would have been N different vectors r,-,, n,  n = 1 - N .  For large N an average 
vector, r%-, would lie along the direction of r ,  with a magnitude Y $ - ~ ,  as illustrated 
in figure 9. If the N vectors at m -  1 do not vary much in direction, the average 
magnitude (r,-,) will be nearly the same as rkp1 and we may write that approximately 
rk-1 - - Gr,. 

For each rm-l, there are corresponding products ( u ~ , ~  u ~ , ~ ) ~ - , ,  ll. Averages of these 
products for each combination of i and j  and for large N are the desired ,u(,~, m-l. Again, 
if the individual r,-l, are not too different one may expect that estimates of p i , j ,  m-l 

found from the average vector rk-, = Gr, should be good approximations to the true 

C.2. Evaluation of the 
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FIGURE 9. An illustration of a vector r,  and hypothetical vectors rm-l,n plotted so that points 1 
coincide. The cloud of terminal points 2 has a centroid that defines the terminus of a vector Gr, that 
is used to determine the , u ~ , ~ , ~ - ~ .  

values. In tests it has been found that for G = 0.96 the vectors r,-l differ in direction 
from r ,  with a standard deviation of only 2 degrees, so we may expect that the use of 
Gr,  in (21) will give good estimates of 

A comparison has been made between computed values of ,u~,~, m-l and theoretical 
values in the following way. For a fixed rm theoretical values were found from (21) 
using the vector Gr,. To obtain comparable values from the computational model, 
many ( N  = 120000) single forward steps were made, each starting from the same r ,  to 
obtain many rm+l,n.  Each pair of vectors was then separately rotated and scaled back 
to make each of the r,+l,n identical with the original rm, and these were thereafter 
called the r,. The old fixed r ,  then became the new and variable rm-l ,n.  The variable 
initial velocity components and u , ,~ ,  also were rotated and scaled to become the 
new q i ,  m-l and u ~ , ~ ,  m-l. The resultant values 

- 
P$,j,rn-l - [-)I 

were found to be indistinguishable from the theoretical values as far as the required 
accuracy in (25) was concerned. These comparisons were made at several orientations 
of r ,  to test for any possible dependence upon angle. Thus the use of Gr,  for the 
determination of m-l appears to be justified. 

Appendix D. The generation of correlated velocity components 
The following algorithm is applied to the determination of correlated initial velocity 

components u , . ~ , ~  and u , , ~ , ~  and correlated random components zil,i  and at each 
time step. In this Appendix the derivation is written for the random components. 

Given the six correlations z i l , i z i 2 , j  we start by drawing six independent random 
values, zil,$, i1, i4 and s”, from a normal distribution. The three zi,,i and s”, are to be used 
directly while i4 and s”, are to be used to find correlated random numbers s”, and s”, 
which in turn are needed to find the ~2,,~. 

The zi,,j are generated from 

(D 1) 
A ”  ~2, ,~  = , ~ ~ , ~ u ~ , ~ + d ~ s ” ~  ( i , j= 1-3, sumonionly). 

The following comments on this formulation may be helpful. 

x, y and z ,  an example of (D 1) for j = 2 is 
(i) If the velocity components for i = 1,2,3 are referred to as zi, 0, $, and the axes are 

6 ,  = , L x , ~ z i l + ~ ~ , ~ 6 1 + , L ~ , ~ $ l + d ~ s ” 2 .  (D 2) 

(ii) The fact that the are appropriate coefficients for the expansion in (D 1) 
= may be seen by multiplying (D 2) by zi and averaging, noting that 

zi, 6, = zi, s”, = 0, leaving the identity u1 u, = ,Lx,,. 
= 1 while - ~~ 
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(iii) It will be shown that is and i3 (to be found as functions of il, i,: and 9,) are 
as is i,. This independence is needed in the derivations that independent of the 

follow. 
(iv) The di will be determined as functions of the 
Squaring (D l), i.e. multiplying (D 1) by 

$2, k = bi, k 'l> i + 'k $k 

and E3-averaging leads to 
__ 

I ~ , , ~ I . ? ~ , ~  = bi,j,L2i3k+djdkiiik (sum over i). 

For k = j  (D 4) reduces to 

and thus 
1 = ,L2i,j,L2i,j+d;, 

dj = &(I  -,L2. . " ) ' iZ ,  2 , j k j  

where either root is acceptable because the dj multiply the normally distributed random 
numbers, ii. Thus f o r j  = 2, for example, 

d, = +(I  -,12~,~-/2~,~-,L2~, 3 2  )l/' . 

For k i j  z2s,ji2,,k = 0 and (D 4) reduces to 
~ 

ijik = ,,4i,j,iii,k/djdk. (D 8) 

(D 9) 

For j = 2 and k = 3 an example of (D 8) is 
- 
'2'3 = ( 4 1 ; 1 , Z P 1 , 3 + , L 2 2 , Z , , 4 2 , 3 + , L 2 3 , 2 , L 2 3 , 3 ) / d 2  d3. 

-- 
Thus (D 8) gives three s-correlations : i1 is, iz j3, and m, in terms of the known ,i& and 
the known dj. 

Having already selected i, we now use these i correlations to find i, and 8,. Here it 
may be noted that although i,, 9, and i, are correlated they are random variates, but 
not independent random variates. 

To find 9, let 
i2 = h, i, + h, i4. (D 10) 

Then it is apparent from the previous use of such formulae that h, = and h, = 
(1 so i, can be calculated from (D 10). Clearly j2 is a random variate with 
a normal distribution for it is the weighted sum of two normally distributed random 
variates, and because it has been calculated without reference to the it is 
independent of the z?,,~ as claimed above. 

To determine i, let 
i3 = h, 9, + h, S, + h, 9,. (D 11) 

Then multiplying (D 11) in turn by 9, and then by i2 and averaging we find 

a = h3 + h, h,, 

i, 4 = h3 h, + h,, 
- 

which can be solved for h, and h,. Finally, squaring (D 11) and averaging one finds 

1 = h ~ + h ~ + h ~ + 2 h l h , h ,  (D 14) 
from which h, can be found, and (D 11) can be used to find 2,. Again, 93 is independent 
of the since it depends upon only the il, i4, and i,. This independence is 
necessary for the formation of (D 4) from (D 1) and (D 3). This completes the 
derivation of variates needed to calculate the $,,j from (D 1). 
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Appendix E. The sequence of calculations 
We are given Cs, F, G ,  a, /I, C,, and C,. At the start of each time step we know r,, 

ri, , ,  u , , ~ , , - ~ ,  and u , , ~ , , - ,  either from specified initial conditions or from a previous 
step. The equations to be solved are: 

At, = F(1- G )  r&/GCl, from (26), (E 1) 
R, = (2 - CsAt,)/(2+ Cs At,), Q = (1 - R2)ll2 from (S), (E 2) 

pi , j ,  = r$’(++ C ; / ~ ~ - ~ C : / ~ ) Y ~ , , Y ~ , , / Y ~  

+ (1 + r2’,( -2/3 - C;/3 + 3C:/4)) & i , j ,  from (21), (E 3) 

m-l = same as (E 3) but with r ,  replaced by Gr,  and T i ,  , by Gri,m, 
(E 4) 

b i , j , m  = ( ~ i , j ,  m - % ~ i , j ,  m-i>/<Q,>z, from (25)- (E 5) 

dj = +(1 -,ii,jbi,j)l’z, from (D 6), (E 6) 

$.,j j k = b .  a , j  .,i. z,k /d .d  3 k7 from (D ‘1, (E 7) 

h, = a, h, = (1 -h!)”’, following (D lo), (E 8) 

s”, s”, = h, h, + h,, from (D 13), (E 9) 
s”, s”, = h, + h, h,, from (D 12), (E 10) 

h, = (1 -h~-h~-2h1h,h,), from (D 14) (E 11) 

Subscript m is now dropped up to (E 14). 

~ 

~ 

~ 

Solve (E 10) and (E 11) for h, and h,. 

Select six independent random numbers from a normal distribution z 2 1 , i ,  Ji, i4 and i5: 

Copies of the basic computer program written in Fortran for the Macintosh are 
available from the author upon request. 
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